Déclaration du Dr. Robert M. L. Baker, Jr. ‑ Symposium sur les Objets Volants Non Identifiés

  1. Biographie
  2. Déclaration orale
  3. Annexes et pièces jointes

(Suit la biographie du Dr. Baker, Jr.:)

Dr. Robert M. L. Baker, Jr.

Le Dr. Baker est un scientifique de 36 ans ayant reçu son BA avec les Plus Hauts Honneurs en Physique et Mathématique à l'UCLA en , et fut élu Phi Beta Kappa. en il reçu une MA en Physique, et fut lauréat du Prix de Physique de l'UCLA. en le Dr. Baker reçu un doctorat en Ingéniérie, qui fut le 1er de son type à être délivré dans la nation avec une spécialité en Astronautique.

Conformément à son cursus universitaire, le Dr. Baker est au Département d'Astronomie de la Faculté de l'UCLA de en . Depuis cette époque il a été au Département d'Ingéniérie de la Faculté de l'UCLA où il donne actuellement des cours d'astronautique, mécanique des fluides et mécanique structurelle.

Le Dr. Baker est un expert internationalement reconnu dans divers domaines de la science et de l'ingéniérie. Il a été contributeur de recherche dans le développement de procédures de détermination d'orbite utilisant les données radar, les constantes astrodynamiques, near free-molecular flow drag — toutes utilisées dans les programmes spatiaux de la nation. Il a également développé des théories uniques dans le domaine de le conception d'appareils marins hydrofoils.

Dans l'industrie privée le Dr. Baker a initié, supervisé et dirigé des programmes de recherche en astronautique, physique, mécanique des fluides, mathématiques et conception de programmes informatiques. Il a contributé à la définition de problème et l'analyse de problèmes scientifiques et d'ingéniérie dans des projets industriels comme militaires.

La carrière industrielle du Dr. Baker débuta en en tant que consultant pour la compagnie Douglas Aircraft. Entre en il fut Scientifique Senior chez Aeronutronic-Philco-Ford. Alors qu'il était à l'Air Force en et en , il fut officier de projet sur un certain nombre de projets classés de l'Air Force. Entre en il fut directeur du Centre de Recherche d'Astrodynamique de Lockheed, où il dirigea les efforts d'approximativement 25 scientifiques dans divers domaines scientifiques. en le Dr. Baker rejoint la Computer Sciences Corporation (CSC), d'abord comme Responsable Associé de la Recherche et l'Analyse, puis comme le Scientifique Senior de la sous-division des Sciences Système de la CSC. C'est à ce dernier poste qu'il est actuellement impliqué dans plusieurs projets de l'Air Force, la Marine et la NASA.

Le Dr. Baker a représenté la Force Aérienne des Etats Unis à la réunion de la Fédération Internationale Astronautique à Stockholm (Suède) en , représenté les Etats-Unis aux Conférences Européennes de l'Union Internationale de Mécanique Théorique et Appliquée en et en en et fut un invité du Conseil Astronomique [sic] de l'Académie des Sciences de l'URSS à Moscou en . Il fut élu Jeune Homme d'Exception de l'Année par la Chambre de Commerce Junior en . De en il fut Président National du Comité Technique sur l'Astrodynamique de l'Institut Américain d'Aéronautique et d'Astronautique et est actuellement membre du Comité Technique sur l'Informatique.

Le Dr. Baker a été rédacteur-en-chef du Journal des Sciences Astronautiques depuis en . Il a été co-rédacteur-en-chef des Proceedings du Congrès de la Fédération Internationale d'Astronautique de en et l'auteur sénior du 1er livre sur l'astrodynamique : Une introduction à l'astrodynamique, publié en . Le Dr. Baker est l'auteur de 4 livres et de plus de 70 articles techniques (voir annexe 1).

Le Dr. Baker's professional society memberships include the American Association for the Advancement of Science, Phi Beta Kappa, Sigma Xi, Sigma Pi Sigma, Société Américaine d'Astronautique (membre), British Interplanetary Society (Fellow), Institut Américain d'Aéronautique et d'Astronautique (membre associé et membre du comité technique informatique), Société Britannique d'Astronomie (membre), Société Américaine d'Astronomie, Société Américaine de Physique, et Société Météoritique.

Son accréditation de sécurité actuelle est top secret.

Déclaration du Dr. Robert M. L. Baker, Jr., scientifique sénior, Computer Sciences Corp., El segundo (Californie), et faculté, Département d'Ingéniérie, UCLA

Dr. Baker. Bien, merci, M. Roush.

J'aimerai préfacer mes remarques en indiquant ma préférence pour le terme "phénomènes observationnels anormaux," par opposition au terme "objets volants non identifiés."

M. Roush. J'ai observé que vous alliez dire cela et I wonder about some of my Hoosiers back home using those terms.

Dr. Baker. It comes trippingly off the tongue.

M. Roush. It might not only cause some Hoosiers but some laymen some problems. Il pourrait être plus facile de dire OVNIs. Vous pouvez continuer.

Dr. Baker. Je l'appelle AOP.

D'après les données que j'ai examinées et analysées depuis en , je pense qu'il existe effectivement des indices substantiels soutenant la déclaration qu'un phénomène — ou des phénomènes — inexpliqués sont présents dans les environs de la Terre, mais qu'ils pourraient ne pas "voler", pourraient ne pas toujours être "non identifiés" et, peut-être, pourraient même ne pas êtres des "objets" substantiels. Dans la déclaration suivante je --

  1. présenterai une synthèse des analyses que j'ai accomplies à ce jour -- celles qui m'ont amené à penser que des phénomènes anormaux existent ;
  2. expliquerai l'inadéquation probable de nos capteurs terrestres actuels pour observer et/ou définir les caractéristiques des phénomènes anormaux ;
  3. suggererai un certain nombre de sources hypothétiques pour les phénomènes, et la justification pour leur étude scientifique ;
  4. et, finalement, je fera des recommandations spécifiques concernant la nécessité pour de nouveaux types de programmes observationnels et d'étude très proches qui pourraient être mis en œuvre d'une manière qui permettrait la détection et l'analyse quantitative des phénomènes anormaux.

Plusieurs annexes accompagnent ce rapport. Les 2 premières sont en réponse à la lettre d'invitation du Membre du Congrès Roush du le , et consistent en my biographical sketch et un listing de ma bibliographie, respectivement. La 3ᵉ annexe relates directly to my specific recommendations, and was included with the kind permission of Dr. Sydney Walker III. The fourth appendix presents three reprints of articles (Baker (1968a) and (1968b) and Walker (1968)) that are pertinent to the subject matter of this report.

Partie 1 - Analyses de phénomènes observationnels anormaux

Films de l'Utah et du Montana

Mon contact initial avec les phénomènes observationnels anormaux — AOP — vint en lorsque j'étais consultant chez Douglas Aircraft Co. à Santa Monica (Californie), servant comme assistant spécial au Dr. W. B. Klemperer, directeur de l'équipe de recherche de Douglas. Les données consistaient en 2 courts bouts de films : 1 pris dans le Montana — que nous appelons le film du MontanaGreat Falls — et un pris en Utah — que nous appelons le film de l'UtahLe film de Tremonton. Ces films nous furent fournis par le Centre de Renseignement Technique de l'Air — ATICd63Remplacé par FTD, aujourd'hui la Division de la Technologie Etrangère — FTD — à la base aérienne de Wright-Patterson ; des épreuves 35-mm furent fournies par les productions Green-Rouse des studios Samuel Goldwyn.

Les 2 films avaient été pris par des hommes apparemment fialbles et impartiaux utilisant des caméras amateur et, dans chaque cas, était présent témoin crédible, confirmant. Les films montraient le mouvement de points blancs plutôt flous, mais le film du Montana était remarquable en ce que l'avant-plan était visible sur la plupart des images.

Une analyse préliminaire exclua la plupart des phénomènes naturels. Une étude plus détaillée indiquait que le seul phénomène naturel candidat restant pour le film de l'Utah était des oiseaux en vol, et pour le film du Montana il s'agissait des reflets du soleil sur le fuselage d'un avion. Au terme de 18 mois d'une étude plutôt détaillée, quoique non contigüe, utilisant divers équipements de mesure de film [sic] chez Douglas et à l'UCLA, ainsi que l'analyse d'une expérience photogrammétrique, il semblait qu'aucun de ces explications hypothétisées de phénomènes naturels n'ait de mérite, et un rapport fut publié par moi (Baker (1956)) et transmis au brigadier-général Harold E. Watson, commandant de l'ATICd64Remplacé par FTD. La description des circonstances de la prise des films et les analyses des données fournies sur les films étant plutôt longue, et ayant depuis été publiées dans la littérature publique n1[Pour le film de l'Utah, voir Baker et Makemson (1967): pour le film du Montana, voir Baker (1968a). Cette dernière réference est incluse en annexe de cet article], il ne semble pas raisonnable de répéter les analyses ici.

Film de Floride

Au cours de cette étude nous eûmes également l'occasion de voir certaines photographies de caméras de tir prises au-dessus de la Floride. Malheureusement, nous n'avons pu garder ce film, et n'avons pas eu le temps suffisant pour accomplir une analyse complète. Comme les films du Montana et de l'Utah, ce film ne montrait également que des images de points blancs ; cependant, comme un avant-plan était présent, une étude compétence aurait pu être menée. Le Dr. Klemperer et moi étions d'accord sur la conclusion préliminaire — non soutenues par des analyses détaillées — que, à nouveau, aucun phénomène naturel n'était une source probable des images.

Film du Vénézuela

en je reçu un extrait de film d'un certain M. Richard Hall, décrit comme ayant été pris depuis un appareil (DC-3) près des Angel Falls, Vénézuela, vers 12 h 15. Cet extrait de film était un film couleur 8-mm, exposé à 16 images/s et montrait un objet jaune très brillant, légèrement en forme de poire, qui disparût dans un banc de nuages au bout de 60 ou 70 images. A l'époque j'étais le directeur du Centre de Recherche Astrodynamique de Lockheed Aircraft Co. Nous avions développé un petit groupe de photogrammétristes consistant en le Dr. P. M. Merifeld et M. James Rammelkamp, et étions capable d'entreprendre une étude du film. Initialement, Merifeld et Rammelkamp trouvèrent peu d'intérêt dans le film. Après leur examen préliminaire, je consacrais un effort considérable à une analyse plus approfondie. Encore une fois, je ne parvins qu'à tirer la conclusion que l'objet jaune n'était aucun phénomène naturel connu ; mais [avant que] nous puissions déterminer quantitativement les vitesses et accélérations angulaires, et les limites de distance, la vitesse linéaire et l'accéleration, le film fut perdu (à l'exception d'une microphotographie montrant l'objet sur 1 image). Il ne fit, cependant, aucun doute dans mon esprit quant au caractère anomalistiques des images.

Film de Californie

en , M. Zan Overall me montra 3 films au cinéthéodolite qui avaient été pris simultanéments par 3 caméras différentes d'un lancer de Thor-Able Star à la base aérienne de Vandenberg (projet A4/01019). Ces films montraient un objet blanc se déplaçant verticalement (par rapport au cadre du film) devant un ciel bleu et clair. L'objet était à peu près aussi brillant que l'échappement du propulseur du 2nd étage, et dépassa le propulseur à 1/3 °/s environ. Des estimations grossières de la direction du Soleil — basées sur les ombres sur les premières images — et des vents en hauteur — indiqués par le mouvement de la plume d'échappement de la fusée) — furent faites. Celles-ci, avec la luminosité de l'objet et son rythme d'ascension, semblèrent exclure ballons, avions, reflet, mirages, etc. L'un des cinéthéodolites étant sur un site à une certaine distance des 2 autres, une détermination de la parallaxe des distance et vitesse effectives de l'objet put être déterminée assez facilement. Les films étant prêtés par la Marine, je ne pus réaliser l'étude nécessaire et une détermination du caractère précis du phénomène (naturel ou anomalistique) ne put être faite. En 1967, je discutais du sujet avec le professeur William K. Hartmann de l'Université de l'Arizona, et le professeur Roy Craig de l'Université du Colorado. A cette époque, ils étaient impliqués dans le Groupe d'Etude des Ovnis du Colorado, et indiquèrent qu'ils tenteraient d'obtenir le film pour une autre analyse. Bien qu'était sûr qu'ils firent un effort conscientieux pour obtenir les films, ils n'y parvinrent apparemment pas (il y a 6 mois de celà, tout du moins).

Films probablement non anormaux

En plus des foregoing film clips — which seemed to involve data that were the result of anomalistic phenomena — the Montana film in my opinion, certainly was anomalistic and all of the other films except for the California film, most probably were anomalistic — I have also had the opportunity to view approximately a half dozen other films, purportedly of "UFO's." The images on these films appeared possibly to be the result of natural phenomena, such as reflections on avions, mirages atmosphériques, reflets optiques, oiseaux, ballons, insectes, satellites, etc. Par exemple, un ensemble récent (février 1968) de 2 films fut pris, en utilisant un équipement de tournage professionnelle, par une équipe de Universal Studio sur les lieux. Bien que d'apparence plutôt particulière, les objets ainsi photographiés auraient pu conceivably been the result of airplane reflections.

A ce jour mes analyses de données de films anomalistiques ont été relativement peu gratifiantes. Although I am convinced that many of the films indeed demonstrated the presence of anomalistic phenomena, they all have the characteristic or rather ill-defined blobs of light, and one can actually gain little insight into the real character of the phenomena. For example, linear distance, speed, and acceleration cannot be determined precisely, nor can size and mass. As I will discuss in a moment, this situation is not particularly surprising, since, without a special-purpose sensor system expressly designed to obtain information pertinent to anomalistic observational phenomena, or a general-purpose sensor system operated so as not to disregard such data, the chance for obtaining high-quality hard data is quite small.

Partie 2 - Inadéquations de l'équipement de capteurs et des systèmes existants

Les capacités des capteurs optiques astronomiques have been dealt with in a thorough fashion par Page en 1968. Le Réseau Prairie pour les Observations des Météores s1(McCrosky et Posen (1968) est un bon exemple de système optique à large couverture, mais comme c'est si souvent le cas, et comme Page (1968) l'a indiqué. *** K E. McCrosky de l'Observatoire Astrophysique Smithsonien m'a informé qu'aucune recherche approfondie (de données anomalistiques) n'a été menée. Even so, some astronomical photographs are bound to exhibit anomalistic data. Again quoting from Page (1968), *** W. T. Powers of Northwestern University Astronomy Department informed me that 'several' of the Smithsonian-net photographs show anomalous trails. As I have already pointed out (Baker (1968b) to be found in appendix 4), the majority of our astronomical equipment (e.g., conventional photographic telescopes, Baker-Nunn cameras, meteor cameras, Markowitz Dual-Rate Moon Cameras, et cetera) are special purpose in nature, and would probably not detect the anomalous luminous phenomena reported by the casual observer if they were indeed present. Their photographic speed, field of view, et cetera, impose severe restrictions on their ability to collect data on objects other than those they have been specifically designed to detect As already noted in the quotes from Page (1968), even if such data were collected, the recognition of their uniqueness or anomalous character by an experimenter is improbable. Examples abound, in the history of celestial mechanics, of minor planets being detected on old astronomical plates that had been measured for other purposes, and then abandoned.

Nos systèmes de surveillance et suivi de l'espace radar et optique sont encore plus restrictifs et ainsi, encore moins susceptibles de fournir des informations sur des phénomènes anomalistic que le sont des capteurs astronomiques. Le radar de la Signal Test Processing Facility (STPF) à Floyd, dans l'état de New York, est un radar expérimental de haute performance ayant une largeur de rayon de 1/3 °. Pour le verrouillage et le suivi, un objet would have to be pinpointed to one-sixth degree, and even if the radar did achieve lockon, an erratically moving object could not be followed even in the STPF radar's monopulse mode of operation. For this reason only satellites having rather well-defined paths (i.e., ephemerides), which have been precomputed, can be acquired and tracked.

Our three BMEWS radars propagate fans of electromagnetic energy into space. If a ballistic missile or satellite penetrates two of these fans successively, then it can be identified. Since astrodynamical laws govern the time interval between detection fan penetrations for "normal" space objects, all other anomalistic "hits" by the radar are usually neglected, and even if they are not neglected, they are usually classified as spurious images or misassociated targets, and are stored away on magnetic tape, and forgotten.

One space surveillance site operates a detection radar (FPS-17) and a tracking radar (FPS-79). If a new space object is sensed by the detection radar's fans, then the tracking radar can be oriented to achieve lockon. The orientation is governed by a knowledge of the appropriate "normal" object's astrodynamic laws of motion, or by an assumption as to launch point. Thus, if an unknown is detected, and if it follows an unusual path, it is unlikely that it could, or would, be tracked. Furthermore, the director of the radar may make a decision that the unknown object detected is not of interest (because of the location of the FPS-17 fan penetration or because of the lack of prior information on a possible new launch). In the absence of detection fan penetration (the fan has a rather limited coverage), the FPS-79 tracking radar is tasked to follow other space objects on a schedule provided by the Space Defense Center, and again there is almost no likelihood that an anomalistic object could, or would, be tracked.

Les radars de la NASA, tels que ceux de Millstone et de Goldstone, are not intended to be surveillance radars, and only track known space objects on command. Again the chances of their tracking anomalistic objects are nearly nil. The new phased-array radar at Eglin AFB (FPS-85) has considerable capability for deploying detection fans and tracking space objects in a simultaneous fashion. Such versatility raises certain energy-management problems — that is, determining how much energy to allocate to detection and how much to tracking — but this sensor might have a capability (albeit, perhaps, limited) to detect and track anomalistic objects. The problem is that the logic included in the software associated with the FPS-85's control computers is not organized in a fashion to detect and track anomalistic objects (I will indicate in a moment how the logic could be modified). Furthermore, the FPS-85, like the other surveillance radars is usually tasked to track a list of catalogued space objects in the Space Defense Center's data base and the opportunity to "look around" for anomalistic objects is quite limited.

There are a number of other radar surveillance systems such as a detection fence across the United States. In the case of this fence, we have a situation similar to BMEWS, in which the time interval between successive penetrations (in this case separated by an orbital period for satellites) must follow prescribed astrodynamical laws. If they do not, then the fence penetrations are either deleted from the data base or classified as unknowns or uncorrelated targets, filed, and forgotten.

There is only one surveillance system, known to me, that exhibits sufficient and continuous coverage to have even a slight opportunity of betraying the presence of anomalistic phenomena operating above the Earth's atmosphere. The system is partially classified and, hence, I cannot go into great detail at an unclassified meeting. I can, however, state that yesterday (July 28, 1968) I traveled to Colorado Springs (location of the Air Defense Command) and confirmed that since this particular sensor system has been in operation, there have been a number of anomalistic alarms. Alarms that, as of this date, have not been explained on the basis of natural phenomena interference, equipment malfunction or inadequacy, or manmade space objects.

Partie 3 - Sources hypothétiques pour observations anormales et justification de leur étude

Dans Baker et Makemson (1967), j'ai discuté des candidats habituels comme sources naturelles d'observations anomalistiques. Par exemple, certains radars scrutateurs — tels que les radars d'aéroports — pick up anomalistic returns termed angels. A variety of explanations have been proposed, variously involving ionized air inversion layers, etc. (see Tacker (1960) and even insects (see Glover, et al. (1966)). With respect to human observation of anomalistic luminous phenomena, some rather strong positions have been taken by such authorities as Menzel (1953), who feels that the predominant natural phenomenon is atmospheric mirages ; par Klass (1958a), qui pense que le phénomène naturel prédominant est lié à la foudre en boule déclenchée par de hautes tensions comme des décharges coronaires, des avions à réaction, des tempêtes électriques, etc.; par Robey (1960), qui pense qu'il s'agit d'observations de cometoïdes entrant dans l'atmosphère de la Terre, etc. La liste des sources hypothétiques de phénomènes observationnels anormaux est effectivement longue, mais d'après les données photographiques que j'ai analysées personnellement, je suis convaincu qu'aucune de ces explications n'est valide.

Les analyses que j'ai menée à ce jour ont traité des éléments observationnels que j'appelle "données dures" — c'est-à-dire, des données photographiques permanentes. Bien que je ne discuterai pas en détails les analyses de témoins occulaires (que j'appelle "données douces") n2[Extrait dans annexe 3 de ce rapport -- un article fourni par le Dr. Sydney Walker III, concernant un cas hypothétique], Powers (1967), McDonald (1967), Hynek (1966) et d'autres ont conclu que overwhelming evidence exists that a truly anomalistic phenomenon is present.

Of course, there are numerous others who have come to a completely opposite conclusion; in fact, it becomes almost a matter of personal preference: it is possible for one to identify all of the anomalistic data as very unusual manifestations of natural phenomena. No matter how unlikely it is, anything is possible — even a jet plane reflecting the sun in direct opposition to the laws of optics. I'm sometimes reminded of the flat earth debates that I organized 10 years ago in my elementary astronomy courses at UCLA. Some students became so involved in justifying their positions — either flat or spherical — that they would grasp at even the most improbable argument in order to rationalize their stand.

M. Roush. Docteur Baker, désolé de vous interrompre, mais je vais avoir un bref recess ici.

Dr. Baker. Certainement.

M. Roush. Il y a un mouvement pour recommit the military construction bill, and I would like to vote on it. None of my colleagues are here right now, so we will declare a very brief recess, and I shall return as quickly as I can.

(Whereupon a short recess was taken for a floor vote.)

M. Roush. The committee will be in order.

Dr Baker, vous pouvez continuer.

Dr. Baker. Merci.

Personally, I feel that it is premature for me to agree that the hard and soft data forces the scientific community to give overriding attention to the hypothesis that the anomalistic observations arise from manifestations of extraterrestrial beings. On the other hand, I strongly advocate the establishment of a research program in the area of anomalistic phenomena -- an interdisciplinary research effort that progresses according to the highest scientific standards; that is well funded; and that is planned to be reliably long term. The potential benefit of such a research project to science should not hinge solely on the detection of intelligent extraterrestrial life; it should be justified by the possibility of gaining new insights into poorly understood phenomena, such as ball lightning, cometoid impact, and spiraling meteorite decay.

There is practical value in such research for the Military Establishment, as well. Let us suppose that something similar to the "Tunguska event" of en occurred today, and that it was Long Island in the United States, rather than the Podkamenaia Tunguska River Basin in Siberia that was devastated by a probable comet impact. Would we misinterpret this catastrophic event as the signal for world war III? What if another "fireball procession," such as occurred over Canada on February 9, 1913, repeated itself today, and the low-flying meteors were on nearly polar orbits that would overfly the continental United States. Would we interpret the resulting surveillance data as indicating that a fractional orbital bombardment system (FOBS) had been initiated in Russia? My knowledge of our Air Force sensors, both current and projected (see Baker and Ford (1968)), indicates that they are sufficiently sophisticated so that they would probably not react prematurely and signal a false alarm — although a careful study of this point should be made. On the other hand, there may exist other anomalistic sources of data that might give rise to a false alarm and perhaps provoke us either to deploy our countermeasures, or even to counterattack.

Before I enumerate the specific benefits this research might confer upon various scientific disciplines, allow me to digress briefly on the subject of soft data. The primary reason that I have avoided the introduction of soft data into my photographic studies and have not involved myself in the analysis of eyewitness reports (such as the excellent ones given by Fuller (1966)), is that I have been unable to develop a rational basis for determining the credibility level for any given human observer. Although they lie outside the field of my own scientific competence, I feel that credibility evaluations of witnesses would form an important adjunct to any serious study of anomalistic phenomena (see Walker (1968) included in app. 4 of this report). The soft data must involve some useful information content, and it would be extremely unrealistic to neglect it entirely. For this reason, I have included appendix 3 by Dr. Walker, which presents a logical procedure for establishing a credibility level for observers. Walker's report of a hypothetical case integrates the results of general medical, neuroopthalmologic, neurologic, and psychiatric evaluations, and develops a logical basis for assigning an overall credibility score.

Le Dr. Robert L. Hall est, bien sûr, éminemment qualifié pour commenter la question des témoins occulaires à ce seminaire.

Si des études sérieuses peuvent être initiées, avec les objectifs de détecter, analyser et identifier les sources de phénomènes observationnels anormaux, alors je pense que les bénéfices scientifiques suivants pour en être attendus :

  1. Météoritique — Bien qu'il existe aujourd'hui un certain nombre de réseaux opérants sur les météores, les données recueillies sur des phénomènes en déplacement erratique (y compris la détermination rapide de la localisation de tous "atterrissages" ou impacts) apporteraient de manière non négligeable à la couverture et aux analyses des météorites et, éventuellement, aux comètes entrantes. De plus, la récupération opportune de débris météoritiques at the subend point of fireballs would be most valuable.
  2. Géologie — Il a été avancé par Lamar et Baker (1965) qu'il existe des effets résiduels sur les desert pavements qui pourraient avoir été produits par des comètes entrantes. De plus, tout indice géologique ou matérial de l'impact ou de l'"atterrissage" d'objets extraterrestres serait d'un grand intérêt. Comme le docteur John O'Keefe (1967), assistant-en-chef au Laboratoire d'Etudes Théoriques du GSFC de la NASA l'a indiqué Ne serait-il pas possible d'obtenir some scraps de ces objets ("ovni") pour les examiner ? Par exemple, a scrap of matter, même petit, pourrait être analysé pour y rechercher les types d'alliages dans les fonderies terrestres.
    Un morceau de vis, même petit, serait anglais, métrique ou martien. Je suis impressed by this because I looked at some tens of thousands of pictures of the Moon and found that the very small amount of chemical data has more weight in interpreting the past history of the Moon than the very large amount of optical data. It doesn't seem possible that objects ("flying saucers") of this size can visit the Earth and then depart, leaving nothing, not even a speck, behind. We could analyze a speck no bigger than a pinhead very easily.
    I concur with O'Keefe's remarks, and if there exist "landings" associated with the anomalistic phenomena, then a prompt and extremely thorough investigation of the landing site must be accomplished before geological/material evidence is dispersed or terrestrialized.
  3. Physique atmosphérique — One of the great mysteries today is the formation, movement, and explosion of ball lightning. As Singer (1968) noted:
    The specific properties of ball lightning, which present particular difficulty in experimental duplication, are formations of the sphere in air (at near-atmospheric pressure and at a distance from the source of energy) and its extensive motion. It is evident that additional clarification of both theoretical and experimental aspects is needed.
    With respect to "plasma UFO's" M. Philip J. Klass (1968b) comments that: If conditions -- all of the conditions -- needed to create plasma-UFO's near high-tension lines or in the wake of jet aircraft occurred readily we should have millions of UFO reports and the mystery would have been solved long ago. But the comparative rarity of legitimate UFO sightings clearly indicates that the ball-lightning related phenomenon is a very rare one.
    Even if ball lightning is not the primary source of anomalistic data (and I am not at present convinced that it is), any program investigating anomalistic observational phenomena would surely shed significant light on the ball-lightning problem.
  4. Astronomie — I have already noted the possibility of cometary entry, a study of which would be valuable to the astronomer. If as some respected astronomers believe, the anomalistic observational phenomena (including perhaps, "intelligent" radio signals from interstellar space) are the results of an advanced extraterrestrial civilization, then the study of the phenomena would become a primary concern of the entire human race. The implications for astronomy are overwhelming.
  5. Psychiatrie et psychologie — Since bizarre events have been reported, the study of eyewitness credibility, under stressful circumstances of visual input, if possible. As I will recommend later: if a competent, mobile task force of professionals could be sent into action as soon as anomalistic events are detected, then reliable evaluation of eyewitness reports (soft data) in relation to the actual hard data obtained, could be accomplished. Even if the event was only a spectacular fireball, or marsh gas, the psychiatric/medical examination of eyewitnesses would still be more informative.
  6. Sociologie — Bien que n'étant pas classée comme une science physique, il semble y avoir ici un défi pour les sciences sociales. It has been my contention throughout this report that it is not a prerequisite to the study of anomalistic observational phenomena to suppose that they result from extraterrestrial intelligence.
    Nevertheless, it still is an open possibility in my mind. It seems reasonable, therefore, to undertake a few contingency planning studies. In order to extract valuable information from an advanced society, it would seem useful to forecast the approximate characteristics of such a superior intelligence — or, if not necessarily superior, an intelligence displayed by an industrial, exploratory culture of substantially greater antiquity. There exist dozens of treatises on technological forecasting; one can key estimates of technological advancement to speed of travel, production of energy, productivity, ubiquity of communications, etc. There have been many debates on the technical capabilities or limits on the capabilities of advanced extraterrestrial societies (for example, see Markowitz (1967) et Rosa, et al. (1967). Often intermixed with these technological capabilities arguments, however, are very dubious comments concerning the psychological motivations, behavioral patterns, and unbased projections of the social motivations of an advanced society. Hypothetical questions are often raised such as, *** if there are flying saucers around, why don't they contact us directly? *** I would if I were investigating another civilization. Such comments are made on extremely thin ice, for, to my knowledge, no concerted study has been carried out in the area of forecasting the social characteristics of an advanced extraterrestrial civilization. Philosophers, social scientists, and others usually undertake studies of rather theoretical problems. (See Wooldridge (1968) and Minas et Ackoff (1964). If only a quantitative index or indices of social advancement could be developed that, say, would differentiate us from the Romans in our interpersonal and intersociety relationships (for example, tendencies toward fewer crimes of violence, fewer wars, etc.), then we might be better equipped to make rational extrapolations from our own to an advanced society. In fact, such as index, if it could be developed might even be beneficial in guiding our existing earth-based society.
  7. Serendipity — In addition to the value of anomalistic phenomena studies to these specific scientific disciplines, there is always serendipity. Any scientific study of this nature is potentially capable of giving substantial dividends in terms of "spin-off." For example: in improved techniques in radar and optical sensor design and control; in giving a reliable quantitative credibility level to witness' statements in court; or in deciphering and/or analyzing anomalistic radio signals from interstellar space.

Partie 4 - Conclusions et recommandations

Au cours des 16 dernières années j'ai sérieusement (quoique sporadicquement) suivi les analyses de signalements d'"OVNI" ou de "soucoupe volante" — scientifiques et quasi-scientifiques. Ma conclusion est qu'il y a only so much quantitative data that we can squeeze out of vast amounts of data on anomalistic observational phenomena that has been collected to date. I believe that we will simply frustrate ourselves by endless arguments over past, incomplete data scenarios ; ce dont nous avons besoin est d'analyses plus sophistiquées de données observationnelles anomalistiques fraîches. We must come up with more than just a rehash of old data.

I emphasize that it is very unlikely that existing optical and radar monitoring systems would collect the type of quantitative data that is required to identify and study the phenomena. Moreover, we currently have no quantitative basis upon which to evaluate and rank (according to credibility) the myriad of eyewitness reports. Thus continuing to "massage" past anomalistic events would seem to be a waste of our scientific resources. In balance, then, I conclude that:

  1. We have not now, nor have we been in the past, able to achieve a complete — or even partially complete — surveillance of space in the vicinity of the earth, comprehensive enough to betray the presence of, or provide quantitative information on, anomalistic phenomena.
  2. Hard data on anomalistic observational phenomena do, in fact exist, but they are of poor quality, because of the inadequacies of equipment employed in obtaining them.
  3. Soft data on anomalistic phenomena also exist, but we have no quantitative procedure to evaluate their credibility and develop clear-cut conclusions on the characteristics of the anomalistic phenomena.
  4. It follows from the scientific method that an experiment or experiments should be devised, and closely related study programs be initiated expressly to define the anomalistic data better.
  5. In order to justify such an experiment and associated studies, it is not necessary to presuppose the existence of intelligent extraterrestrial life operating in the environs of the earth, or to make dubious speculations either concerning "their" advanced scientific and engineering capabilities or "their" psychological motivations and behavioral patterns.

In the light of these conclusions, I will make the following recommendations:

  1. In order to obtain information-rich hard and soft data on anomalistic phenomena, an interdisciplinary, mobile task force or team of highly qualified scientists should be organized. This team should be established on a long-term basis, well funded, and equipped to swing into action and investigate reports on anomalistic phenomena immediately after such reports are received. Because of the relatively low frequency of substantive reports (see p. 1968), immediate results should not be anticipated, but in the interim periods between their investigations in the field, their time could be productively spent in making thorough analyses of data collected by them previously, and in "sharpening up" their analysis tools.
  2. In concert with the aforementioned task force, a sensor system should be developed expressly for detecting and recording anomalistic observational phenomena for hard-data evaluation. The system might include one or more phased-array radars (certainly not having the cost or capability of the FPS-85, but operating in a limited fashion that would be similar to the FPS-85). A phased-array radar would have the advantage over a conventional "dish" radar in that it could track at high rates and divide its energy in an optimum fashion between detection and tracking. The control system would be unique, and would necessitate the development of a sequential data-processing controller that would increase the state variables describing the object's path from a six-dimensional position and velocity estimation to a 12-dimensional acceleration and jerk estimation (Baker (1967)) in order to follow erratic motion.
    In addition, the data base would have to be especially designed, to avoid manmade space objects and (if possible) airplanes, birds, common meteors, etc. It should, however, be designed to detect and track nearby cometoids, macrometeorites (fireballs), ball lightning, and any other erratic or anomalistic object within its range. Optical cameras (including spectrographic equipment) should be slaved to the radar, in order to provide more comprehensive data. Because of the aforementioned low frequency of anomalistic data, alarms from the system should not occur very frequently and could be communicated directly to the recommended task force.
  3. A proposed new-generation, space-based long-wave-length infrared surveillance sensor system should be funded and the associated software should be modified to include provisions for the addition of anomalistic objects in its data base. The specific sensor system cannot be identified for reasons of security, but details can probably be obtained from the Air Force. This sensor system, in particular, could provide some data (perhaps incomplete) on anomalistic, objects which exhibit a slight temperature contrast with the space background, on a basis of noninterference with its military mission. The system represents a promising technological development, and no other novel technique introduced in recent years offers more promise for space surveillance. In my view, the scientific principles underlying the proposed surveillance system are sound, and a developmental measurements program should be initiated.
  4. The software designed for the FPS-85 phase-array radar at Eglin Air Force Base be extended in order to provide a capability to detect and track anomalistic space objects. The relatively inexpensive modification could include the implementation of tracking techniques such as those outlined in Baker (1967). It should, however, be clearly borne in mind that only a limited amount of tracking time (about 30 percent) could be devoted to this endeavor, because of the overriding importance of the surveillance of manmade space objects which is the basic responsibility of this radar.
  5. Various "listening post" projects should be reestablished (using existing instruments) in order to seek out possible communications from other intelligent life sources in the universe. See, for example, Shklovskii and Sagan (1966), chapters 27, 28, 30, and 34.
  6. Technological and behavioral pattern forecasting studies should be encouraged in order to give at least limited insight into the gross characteristics of an advanced civilization. These studies (probably not Government funded) should include the social-psychological implications of anomalistic observational phenomena, as well as the psychological impact upon our own culture that could be expected from "contact" with an advanced civilization. (See ch. 33 of Shklovskii and Sagan (1966).)
  7. Studies should be initiated in the psychiatric/medical problems of evaluating the credibility of witness' testimony concerning bizarre or unusual events. (See app. 3 of this report.)

Partie 5 - Après-propos

All of the foregoing recommendations involve the expenditure of funds, and we are all well aware of the severe limitations on the funding of research today. On the other hand, I feel that one of the traps that we have fallen into, so far, is reliance on quick-look, undermanned and underfunded programs to investigate a tremendous quantity of often ambiguous data. I would discourage such programs as being diversionary, in regard to the overall scientific goal.

The goal of understanding anomalistic phenomena, if attained, may be of unprecedented importance to the human race. We must get a positive scientific program off the ground; a program that progresses according to the highest scientific standards, has specific objectives, is well funded, and long term.

Merci.

Annexes et attachements

Références

  1. Baker, R.M.L., Jr. (1956) "Analysis of Photographic Material Serial 01 and 02," Douglas Aircraft Report dated 24 March and 26 May l956.
  2. Baker, R.M.L., Jr. (1967) Astrodynamics: Applications and Advanced Topics, Academic Press, New York, pp. 112-115 and pp. 376 to 392.
  3. Baker, R.M.L., Jr. (1968a) "Observational Evidence of Anomalistic Phenomena," Journal of the Astronautical Sciences, Vol. XV, No. 1, pp. 31-36.
  4. Baker, R.M.L. Jr. "Future Experiments on Anomalistic Observational Phenomena," Journal of the Astronautical Sciences, Vol. XV, No. 1, pp. 44-45.
  5. Baker, R.M.L., Jr. and Ford, K.C. (1968) "Performance Analysis of Space-Population Cataloging Systems (U)," Secret, SAR, NOFORN Report completed under Air Force Contract F04701-68-C-0219 22 April 1968.
  6. Baker, R.M.L., Jr. and Makemson, M.W. (1967) An Introduction to Astrodynamics, Second Edition, Academic Press, New York, pp. 328-330.
  7. Fuller, J.G. (1966) Incident at Exeter, Putnam, New York.
  8. Glover, K.M., Hardy, K.R., Konrad, T.G., Sullivan, W.N., and Michaels, A.S. (1966) "Radar Observations of Insects in Free Flight," Science, Vol. 154, pp. 967-972.
  9. Hynek, J.A. (1966) Science, Vol. 154, p. 329
  10. Klass, P.J. (1968a) UFO's Identified, Random House, New York.
  11. Klass,P.J. (1968b) Letter dated May 29, 1968.
  12. Lamar, D.L. and Baker, R.M.L., Jr. (1965) "Possible Residual Effects of Tunguska-type Explosions on Desert Pavements," Presented at the 28th Annual Meeting of the Meteoritical Society in Odessa, Texas, October 21 to 24.
  13. Markowitz, W. (1967) Science, Vol. 157, pp. 1274-1279.
  14. McDonald, J. (1967) "The UFO Phenomenon -- A New Frontier Awaiting Serious Scientific Exploration," (An article on an interview with Dr. McDonald by Nyla Crone) Arizona Daily Wildcat, April 6, pp. 6 to 8.
  15. Menzel, D.H. (1953) Flying Saucers, Harvard University Press, Cambridge, Mass.
  16. Minas, J.S. and Ackoff, R.L. (1964) "Individual and Collective Judgements," Chapt. 17 in Human Judgements and Optimality, Edited by M.W. Shelly, II and G. L. Bryan, John Wiley and Sons, New York, pp. 351-359.
  17. O'Keefe, J.A. (1967) Letter dated October 26.
  18. Page, T. (1968) "Photographic Sky Coverage for the Detection of UFO's," Science, Vol. 160, pp. 1258-1260.
  19. Powers, W.T. (1967) "Analysis of UFO Reports," Science, 7 April, 1967, p. 11.
  20. Robey, D.H. (1960) "A Hypothesis on the Slow Moving Green Fireballs," Journal of the British Interplanetary Society, Vol. 17, No. 11.
  21. Rosa, R.J., Powers, W.T., Valee, J.F., Gibbs, T.R.P., Steffey, P.C., Garcia, R.A. and Cohen, G. (1967) Science, Vol. 158, pp. 1265-1266.
  22. Shklovskii, L.S. and Sagan, C. (1966) Intelligent Life in the Universe, Holden-Day, Inc. San Francisco.
  23. Singer, S. (1963) in Problems of Atmospheric and Space Electricity, edited by S. C. Coroniti, Elsevier Publishing Company, New York, p. 463.
  24. Tacker, L.J. (1960) Flying Saucers and the United States Air Force, Van Nostrand, Princeton, New Jersey.
  25. Walker, S., III (1968) "Establishing Observer Creditability: A Proposed Method," Journal of the Astronautical Sciences, Vol. XV, No. 2, pp. 92-96.
  26. Wooldridge,D.E. (1968) Mechanical Man: The Physical Basis of Intelligent Life, McGraw-Hill, New York, Chapt. 19.

Annexe 1 - Bibliografie de Robert M. L. Baker, Jr.

En juillet 1968.

  1. Elements of Charm's Objects (with M. W. Corn, G. L. Matlin, and Silvia Rachman), Minor Planets Circular, 1100, July 15, 1954.
  2. "Optimal Thrust Angle Program for Transit Between Space Points," Douglas Aircraft Company Report SM19180, July 1, 1955.
  3. "Keplerian Missile Trajectories Modified by Initial Thrust and Aerodynamic Drag," Douglas Aircraft Company Report SM-19234, August 1, 1955.
  4. "Approximation to Missile Trajectories on a Rotating Earth," Douglas Aircraft Company Report SM-19235, May 7, 1956.
  5. "Satellite Librations" (with W. B. Klemperer), Astronautica ACTA, III, Fasc. 1, 16-27, 1957.
  6. Units and Constants for Geocentric Orbits (with Samuel Herrick and C.G. Hilton), American Rocket Society Reprint No. 497-57; Proceedings of the 8th International Astronautical Congress, Barcelona, 1957, 197-235.
  7. Orbits (avec Samuel Herrick) Aviation Age, March 1958, 70-77, Vol. 28, #9.
  8. "Transitional Correction to the Drag of a Sphere in Free Molecule Flow" (with A. F. Charwat), The Physics of Fluids, 1, No. 2, 1958, 73-81.
  9. "Drag Interactions of Meteorites with the Earth's Atmosphere," dissertation submitted in partial fulfillment of the degree of PhD at UCLA, May, 1958, xii + 183 pp.
  10. "Passive Stability of a Satellite Vehicle," Navigation, 6, No. 1, Spring 1958, 64-5.
  11. "Navigational Requirements for the Return from a Space Voyage," Navigation, 6, No. 3, Autumn 1958, 175-181.
  12. "Practical Limitations on Orbit Determination," Institute of Aeronautical Science Preprint No. 842, July 8-11, 1958, 10 pp.
  13. "Astrodynamics and Trajectories of Space Vehicles," Space Technology Lecture Series, sponsored by the Long Island IRE and the American Rocket Society, November 13, 1958.
  14. "Encke's Method and Variation of Parameters as Applied to Re-entry Trajectories," American Astronautical Society Reprint No. 58-36, August 19, 1958, 13 pp. and Journal of the American Astronautical Society, 6, No. 1, 1959.
  15. "Recent Advances in Astrodynamics," (with Samuel Herrick), Jet Propulsion, 28, No. 10, 1958, 649-654.
  16. "Ephemeral Natural Satellites of the Earth," Science, 128, 1958, 1211.
  17. "Gravitational and Related Constants for Accurate Space Navigation," University of California, Los Angeles, Astronomical Papers, No. 24, 1, 1958, 297-338. (Same as Item 00006).
  18. "Precision Orbit Determination," (with L. Walters and E. Durand), Aeronutronic Systems, Inc. Report U-306, December 16, 1958.
  19. "Note on Interplanetary Navigation," Jet Propulsion, 28, No. 12, 1958, 834-835.
  20. "Accuracy Required for a Return from Interplanetary Voyages," J. British Interplanetary Soc., May-June, 1959, 93-97 (similar to Item 00011), Vol 17, #3.
  21. "The Application of Astronomical Perturbation Techniques to the Return from Space Voyages," ARS Journal, March 1959, 29, No. 3, 207-211.
  22. "Sputtering as it is Related to Hyperbolic Meteorites," J. Applied Physics, 30, No. 4, April 1959, 550-555.
  23. "Transitional Aerodynamic Drag of Meteorites, " Astrophysical Journal, 129, No. 3, May 1959, 826-841.
  24. "The Sky is No Limit for Opportunities in Astrodynamics," IRE Student Quarterly, May 1959.
  25. "Efficient Precision Orbit Computation Techniques," (with G. Westrom, C. G. Hilton, R. Gersten, J. Arsenault, and E. Browne) ARS Reprint, 1959. (No. 869-59).
  26. "Three-Dimensional Drag Perturbation Technique," UCLA Astrodynamical Report #4, July 1, 1959.
  27. "Astrodynamics," (with Samuel Herrick) Astronautics, 4, No. 11, pp. 30, 180-1, 1959.
  28. "Effect of Accommodation on the Transitional Aerodynamic Drag of Meteorites", Astrophysical Journal, 130, No. 3, 1024-1026, November 1959.
  29. "Training in Astronautics," Space, December 1959.
  30. An Introduction to Astrodynamics (with Maud Makemson) Academic Press, New York, October 1960, 358 +xxi
  31. "Librations on a Slightly Eccentric Orbit," ARS Journal, 30, No. 1, 124-26, January 1960.
  32. "Plane Librations of a Prolate Ellipsoidal Shell," ARS Journal, 30, No. 1, 126-128, January, 1960.
  33. "Lunar Guidance," (with Maj. J. Schmitt and C. C. Combs) in SR-183 Lunar Observatory Study Vol. II (S), ARDC Project No. 7987, Task No. 19769, AFBMD TR 60-44, pages II-3 to II-43, April 1960.
  34. "Orbit Determination from Range and Range-Rate Data," ARS Preprint 1220-60, May 1960.
  35. "Astrodynamics," in Space Trajectories (Academic Press, New York), October 1960 29-68.
  36. "Three-Dimensional Drag Perturbation Technique," ARS Journal, 30, No. 8, 748-753, 1960. (Same as 00026).
  37. "Review of Perturbations of Orbits of Artificial Satellites Due to Air Resistance," ARS Journal, July 1960, 703-704, Vol. 30, No. 7.
  38. "Review of Dependence of Secular Variations of Orbit Elements on Air Resistance," ARS Journal, July 1960, 675, Vol. 30, No. 7.
  39. "Efficient Precision Orbit Computation Techniques" (revised), ARS Journal, 30, No. 8, 740-747, 1960.
  40. "State-of-the-Art-1960 Astrodynamics," Astronautics, 5, No. 11, 30, 1960
  41. "Novel Orbit Determination Techniques As Applied to Air Force Systems," paper presented to the Seventh Annual ARDC Science and Engineering Symposium, Boston, Massachusetts, November 30, 1960.
  42. "1960 Advances in Astrodynamics," ARS Journal, December 1960 (expanded version of Item 00038).
  43. "Analysis and Standardization of Astrodynamic Constants," (with Makemson and Westrom), Journal of the American Astronautical Society, VII, No. 1.
  44. "Preliminary Results Concerning Range-Only Orbit Determination," Proceedings of the First International Symposium on Analytical Astrodynamics, p. 61, June 29, 1961.
  45. "Perturbations," pp. 4-16 - 4-18; "Orbit Determination," pp. 8-34 - 8-38; "Navigation," pp. 27-33 - 27-34, Handbook of Astronautical Engineering, McGraw-Hill Book Company, Inc., 1961.
  46. "State of the Art - 1961 Astrodynamics," Astronautics, Vol. 6, No. 12, December 1961.
  47. "Review of Methods of Celestial Mechanics, by Dirk Brouwer and G. M. Clemence," and "Review of Physical Principles of Astronautics, by Arthur I. Berman, " The Journal of the Astronautical Sciences, Vol. VIII. No. 4 Winter 1961.
  48. "Astrodynamics" Chapter in McGraw-Hill Encyclopedia of Science and Technology, McGraw-Hill Book Company, Inc., 1962.
  49. "Determination of the Orbit of the Russian Venus Probe," (with B. C. Douglas, David Newell, A. K. Stazer, R. L. Held and M. Lifson). ARS Journal, pp. 259-260, February 1962.
  50. "A Note on the Determination of Orbit from Fragmentary Data," (with B. C. Douglas and Mary P. Francis). Lockheed Astrodynamics Research Report #1, LR 15379, April 1962.
  51. "Review of Introduction to Space Dynamics, by W. T. Thomson," "Review of An Introduction to Celestial Mechanics, by Theodore E. Sterne," "Review of Fundamentals of Celestial Mechanics, by J. M. A. Danby," The Journal of Astronautical Sciences, Vol. IX, No. 4, Winter 1962.
  52. "Influence of Planetary Mass Uncertainty on Interplanetary Orbits," ARS Journal, No. 12, Vol. 32, December 1962.
  53. "Elimination of Spurious Data in the Process of Preliminary and Definitive Orbit Determination," Dynamics of Satellites Symposium (Paris, May 28-30 1962), Berlin, Springer-Verlag, 1963.
  54. "Utilization of the Laplacian Method from a Lunar Observatory," Icarus, Vol. 1, No. 4, January 1963.
  55. "Lunar Radio Beacon Location by Doppler Measurements," (with T. P. Gabbard), AIAA Journal, Vol. 1, No. 4, April 1963.
  56. "Review of Space Mechanics, by W. C. Nelson and E. E. Loft," Journal of Astronautical Sciences, Winter 1963.
  57. "[Review of] A Bibliography of General Perturbation Solutions of Earth Satellite Motion," by Taylor Gabbard Jr. and Eugene Levin. Astronautics and Aerospace Engineering, November 1963.
  58. "Review of Introduction to Celestial Mechanics, by S. W. MCuskey," Journal of Astronautical Sciences, Winter 1963.
  59. "Review of Space Flight Vol. II, Dynamics, by Kraft Ehricke," Journal of Astronautical Sciences,. Winter 1963.
  60. "Influence of Martian Ephemeris and Constants on Interplanetary Trajectories," Chapter in Exploration of Mars, American Astronautical Society, 1963.
  61. "Orbit Determination by Linearized Drag Analysis," (with Kurt Forster). AIAA Preprint No. 63-428, presented to AIAA Astrodynamics Conference August 19-21, 1963, Yale University, New Haven, Connecticut.
  62. "Extension of f and g Series to Non-Two-Body Forces," AIAA Preprint No. 64-33, presented at the Aerospace Sciences Meeting, New York, New York, January 20-22, 1964, also AIAA Journal, July, 1964.
  63. "Review of Orbital Dynamics of Space Vehicles," by Ralph Deutsch, Prentice-Hall, Inc., Journal of Astronautical Sciences, Spring 1964.
  64. An Introduction to Astrodynamics, (with Maud Makemson) Academic Press, New York, October 1960, third printing, 1963), Fourth Printing in preparation.
  65. "1964 State of the Art in Astrodynamics," AIAA Annual Meeting, Wash., D.C. June 19 - July 2, 1964, AIAA Preprint No. 64-535, (Also lecture given at Univ. of Wash., Seattle, May 29, 1964, and at Boeing Scientific Research Laboratory, June 1, 1964).
  66. "Space Mechanics," Chapter in Space/Aeronautics, Research and Development Tech. Handbook, 1964/1965, pp. 11-13, published by Conover-Mast, 1964. (New York).
  67. "Radiation on a Satellite in the Presence of [a] Partly Diffuse and Partly Specular Reflecting Body," presented at the Joint Symposium on the TRAJECTORIES OF ARTIFICIAL CELESTIAL BODIES AS DETERMINED FROM OBSERVATIONS; Paris, France, April 20-23, 1965.
  68. "Possible Residual Effects of Meteor and Comet Explosions on Desert Pavements," with Donald L. Lamar; presented at the 28th Meteoritical Society Meeting, Odessa, Texas, October 1965.
  69. Proc. of COSPAR/IUTAM/IAU Symp., Springer/Verlag, 1966 (Same as 00067)
  70. An Introduction to Astrodynamics - 2nd Edition, Academic Press, New York, 1967. (With M. W. Makemson)
  71. Aerodynamics - Applications and Advanced Topics, Academic Press, New York, 1967.
  72. "Recent Advances in Astrodynamics, 1961," (with Mary P. Francis), UCLA Astrodynamical Report #13, January 1962. (Similar to 00046).
  73. "Review of Theory of Orbits by V. Szebehely," Journal of The Franklin Institute, Vol. 284, No. 6, December 1967.
  74. "Observational Evidence of Anomalistic Phenomena," 1968, Journal of the Astronautical Sciences, Volume XV, No. 1, pp. 31-36.
  75. "Future Experiments on Anomalistic Observational Phenomena," 1968, letter to editor, Journal of the Astronautical Sciences. Volume XV, No. 1, pp. 44-45.
  76. "Astrodynamics," 1968, in Encyclopaedic Dictionary of Physics, Pergamon Press.
  77. "Performance Analysis of Space-Population Cataloging Systems (U)," 1968, Secret, SAR, NOFORN Report completed under Air Force Contract F04701-68-C-0219. (With K.C. Ford), April 22, 1968.
  78. "Hydrofoil Sailcraft Water Conveyance Optimum Lift-off Speed," 1968, Science, in press.
  79. "Preliminary Orbit Determination for High-Data-Rate Sensors," 1968, Journal of the Astronautical Sciences, Volume XV, No. 5.
  80. "Surveillance System Sensor Mis-Association of One Object with Another," 1968, to be published.

Annexe 3 - Rééditions